Suppose the rigid body of mass M consists of n particles each of mass m.
The moment of inertia of the body about a given axis, 
I = m r1 2 + m r2 2  +.………….+ m rn 2    = m [ r1 2 + r2 2  +.………….+ rn 2 ] = mK2   
where, K is called the radius of gyration corresponding to the given axis and is the mean of the squares of perpendicular distances of the particles of the body from the given axis.
Moment of inertia and radius of gyration for some symmetric bodies
| Body | Axis | I | K | |
| 1 | Thin rod of length   L | Passing through   its center and Perpendicular to   its length | 1 ML2 12 | L 2 Ö3 | 
| 2 | Ring of radius R                               → Thin-walled hollow   cylinder of radius R  | Passing through   its center and Perpendicular to   its plane Geometric axis | MR 2 | R | 
| 3 | Ring of radius R                               → Circular disc of   radius R                  → Solid cylinder of   radius R                 → | Any diameter Passing through   its center and Perpendicular to   its plane Geometric axis | 1 MR 2 2 | R Ö2 | 
| 4 | Circular disc of   radius R                  → | Any diameter | 1 MR 2 4 | R 2 | 
|  5 |  Thin-walled hollow   sphere of radius R                                                                              |  Any diameter | 2 MR 2 3 | Ö2/3 R | 
|  6 |  Solid sphere of   radius R                  → |  Any diameter | 2 MR 2 5 | Ö2/5 R | 
| 7 | Solid right   circular cone of radius R→        | Geometric axis | 3 R 2 10 | Ö3/10 R | 

 
No comments:
Post a Comment